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Abstract 

The emission of electromagnetic waves by a straight edge dislocation moving in ionic crystals with a NaCl-type lattice has been 
investigated theoretically. It is shown that the motion of a dislocation in the ionic lattice results in the appearance of a specific 
alternative polarization current, generated by uncompensated valence bonds along the edge of the extra plane of a dislocation. For 
a dislocation moving with a constant average velocity V, the frequency of this current is of the order of w - 2zVjh, where b is 
Burgers vector. The fax of electromagnetic energy in the far field and the radiation friction force acting per unit length of the 
dislocation line are calculated. The emission of electromagnetic waves by an edge dislocation oscillating in the glide plane as well 
as by dislocation moving with a constant average acceleration is studied. 0 1997 Elsevier Science S.A. 
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1. Introduction 

The motion of dislocations in solids is accompanied 
by elastic and electromagnetic excitations arising as a 
result of the perturbation of the atomic and electronic 
subsystems of the crystal. The main physical mecha- 
nisms of the acoustic emission arising in the process of 
plastic deformation and fracture are now completely 
understood [l]. Electromagnetic effects in solids, of 
course, have also been well-studied in many respects, 
but at the same time there are only a few published 
papers on the specific problem of electromagnetic emis- 
sion from dislocations and cracks. Here we call atten- 
tion first to the experimental investigations of 
electromagnetic noise generated in the process of devel- 
opment of slip bands and cracks in ionic crystals [2]. 
For all practical purposes, a detailed and consistent 
theoretical analysis of the corresponding phenomena 
has never been made. 
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A mechanism for the generation of an electromag- 
netic wave by a straight dislocation moving in an ionic 
crystal was proposed a rather long time ago in [3]. This 
mechanism is based on the electroelastic effects, which 
for most nonpiezoelectric dielectric crystals are small to 
the extent that the electroelastic moduli are small [4]. 

Our objective in the present paper is to propose and 
work out an alternative mechanism for the electromag- 
netic emission by edge dislocations. The new mecha- 
nism is associated with the excitation of microcurrents 
in the core of a dislocation moving in a nonpiezoelectric 
ionic crystal. 

2. Dislocation as a source of electromagnetic fields in 
crystal 

Let us consider an ionic crystal with the NaCl struc- 
ture. In such a crystal, the core of a straight edge 
dislocation, whose line coincides with the [OOl] direc- 
tion, consists of a chain of sign-alternating charges that 
bounds the extra plane of the dislocation [5]. Let the 
Z-axis be directed along the dislocation line and let the 
plane y = 0 be the glide plane. Then the charge density 
on the dislocation line equals 
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5 {6(z-2ma)-6[z-(2m+l)a]) (1) 
WI= -co 

Here 2a is the lattice period along the dislocation line 
with coordinate x(t) (the positive and the negative 
charges are located at the positions z = 2ma and z = 
(2m + l)a, respectively), e* is the effective charge of the 
edge site on the extra plane, and the function F(x) is 
periodic with period 2b in the x-direction (b is the 
distance between the neighboring minima of the Peierls 
relief in the direction of the X-axis), IF(x)1 I 1. 

The co-factor F(x) appears Eq. (1) because when the 
dislocation crosses over into a neighboring valley of the 
Peierls relief (advancing by one interatomic spacing b 
along the X-axis) the m-th site, initially possessing the 
charge f e*, on the dislocation line undergoes a 
change in polarity acquiring in the new position the 
charge T e* [5]. The function F(x) can be written as 

inmx 
F(x) = 5 F,,, exp b 

m= -23 [ 1 (2) 

We shall assume below that the coefficients F,,, are 
given. For example, in the simplest model case, where 
F(x) = cos(nx/b), F, = F-, = 1 and all other F, = 0. 

For the further calculations, we shall apply the 
scheme employed in classical electrodynamics [6]. Let 
the average velocity of the dislocation V(t) = &x,/c?~ be 
a known function of time. We transform to a locally 
inertial coordinate system moving together with the 
dislocation along the X-axis with the velocity V(t) and 
we write the equation of continuity for the charge, 
fluctuating on the dislocation line, 

Q(p, t) ~ = - divj(r, t) 
at (3) 

where j(r, t) is the current density in the dislocation 
core. We are interested in the fields which vary little 
over distances of the order of the interatomic spacing. 
To obtain them, we average the microcurrents as done 
in the electrodynamics of continuous media [7].Thus, 

ape, t> -= -2 at ae*V(t)F(x)d(y)k6(x-x,(t)) 

2 6(z - 2ma) = - ai;(R, z, t). (4) 
In= --z 1 

Here R is the two-dimensional position vector in the 
z = 0 plane. After averaging ofj,(R, z, t) over the coor- 
dinate Z, we represent the corresponding component of 
the current density in the form 

j,(R, z, t) =; V(t)F(x)G’(x - xO(t))s(y) (5) 

Therefore the expression Eq. (5) describes the macro- 
scopic current density in the core of an edge dislocation 
gliding with velocity I/. 

3. Electromagnetic radiation from an edge dislocation 

In calculating the electromagnetic fields E and H, we 
shall assume that the dislocation moves in an infinite 
homogeneous isotropic nonmagnetic (u = 1) and 
nondispersive (E = const) medium. The polarizability of 
the medium is not of fundamental importance in our 
problem, so that without loss of generality we set E = 1. 
We employ the electrodynamic potentials in the stan- 
dard definition [6] 

H=rotA, E= -:$-grad9 

in the Lorentz gauge &p/at + cdivA = 0 after which for 
the only nonzero component A,(R, t) of the vector 
potential we obtain d’alembert’s equation 

(7) 

The dislocation radiation fields are determined by the 
relations Eq. (6), where the asymptotic forms of 
A,(R, t) in the wave zone must be substituted. 

The spectral components A” (Fourier transformation 
over time) of the function A in dipole approximation 
can be obtained in the form 

(8) 

Here 0: are the spectral components of the electric 
dipole moment density D,(t) of a straight dislocation 
(electric dipole moment per unit length of dislocation 
line): 

m(t) -zz at s d2RL(R, t) =; v(t)@(x,(t)); 

e* co iwD” =- z s 471 cc 
do’v(o - o’)qS(w’) 

Here v(w) and 4(w) are the spectral components of the 
functions V and Q’, respectively. 

In a cylindrical coordinate system R, q,, and z (the 
angle q is measured from the positive direction of the 
X-axis) the electromagnetic field emitted by the disloca- 
tion have two nonzero components: 

E:(R, 40) = - H;(R, ~1 (11) 
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Expression Eq. (11) describes a cylindrical linearly 
polarized electromagnetic wave propagating away from 
the dislocation line. We obtain the space-time distribu- 
tion of the radiation by inverting the time Fourier 
transform in Eq. (11): 

H,(R,rp,t)= -f($)‘:‘~~$Dz(t-~-$); 

-WC CD> t) = - H&C qa, t) (12) 

Naturally, the amplitude of the bremsstrahlune in the 
dipole approximation [7] is proportional to the second 
time derivative of the dipole moment of the radiating 
system 

$ Q(t) = ; 1 
- 

Wt)Wo(t)> + V’(t) g @(x0(t)) 
0 1 

(13) 

where w(t) = dV(t)/Zt is the average acceleration of the 
dislocation. Both terms in Eq. (13) refer to 
bremsstrahlung of the system. The first term is the 
high-frequency carrier (with a frequency of the order of 
V/2b), which is frequency-modulated (to the extent that 
the second derivative differs from zero) and amplitude- 
modulated (on account of the co-factor V(t) varying 
slowly over times - 2b/ v). The second term in Eq. (13) 
does not depend on the acceleration of the dislocation 
and leads to the appearance of radiation even when the 
dislocation moves with a constant average velocity. 

4. Radiation from an uniformly moving edge dislocation 

Consider an edge dislocation gliding in the plane 
y = 0 with constant average velocity I’. Then x,(t) = Vt 
and, correspondingly, u(w) = 271 V6 (w ) and 

(14) 

where w0 = r~V/b. We obtain the spectral components 
of the radiation fields by substituting expression Eq. 
(14) into Eq. (10): 

f nF,,6 (o - noo) (15) 
n= -cx 

The spectral components of the electric field are 
determined by relation Eq. (11). The radiation from a 
uniformly moving dislocation consists of a collection of 
cylindrical harmonics with frequencies which are multi- 
ples of w,. Inverting the Fourier transform in Eq. (14), 
we obtain for the space-time distribution of the electro- 
magnetic radiation fields: 

(16) 

In writing Eq. (16), we employed the fact that the 
function F(x) is even. The intensity of the electric field 
is determined, once again, by the formula Eq. (12). A 
straight edge dislocation radiates cylindrical waves, 
whose amplitude decreases with distance away from the 
dislocation line as R ~ ‘12. 

An estimate of the electric field intensity in the 
emitted wave follows from the expressions Eq. (16) and 
Eq. (12): 

(17) 

At distances of the order of 1 cm from the dislocation, 
the field intensity equals EN 10 ~ 2 uV/m, if V N 10 + 
100 cm/s. In real plastic deformation processes up to 
lo5 dislocations in a slip band move simultaneously, so 
that in a ionic crystal the electromagnetic radiation will 
be appreciable. 

5. Radiation from an oscillating dislocation 

Let a straight edge dislocation with the geometry 
described above oscillates with frequency R and ampli- 
tude u. in the slipe plane X(t) = u. sin Rt. We obtain 
from Eq. (8) the spectral components of vector poten- 
tial for the radiation fields of an oscillating dislocation, 
after which we find the spectral components of the 
magnetic field 

H’;:(R, 9) = 8xime* n c (&)“‘exp( -imt) 

$, Fm kgl kJ2k (y) [6(w - 2kSZ) - 6(w + 2kQ)] 

(18) 

where J, is a Bessel function of integer order m. The 
electric field has one nonzero component Eq. (11). 
Inverting the Fourier transform over time in Eq. (1 S), 
we obtain the space-time form of the radiation fields 

(19) 

The intensity of electric field is determined from Eq. 

(1% 
One can see from Eq. (18) and Eq. (19) that the 

radiation of an oscillating straight edge dislocation 
consists of a superposition of cylindrical harmonics 
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with frequencies which are multiples of twice frequency 
R of the dislocation oscillations. We obtain an estimate 
of the intensity of the electric field in the wave emitted 
by an oscillating edge dislocation 

EE e*(%)‘l’(-$)‘12 (20) 

For the typical values R = 10” SC’, b/x, ~0.01, and 
RN 1 cm, we find E1: 10-‘-10-2 pV/m, which agrees 
with the estimate presented in the preceding section. 

6. Radiation from an accelerated dislocation 

Let the dislocation starts to move at time t = 0 at the 
point x = 0 and moves along the X-axis with constant 
average acceleration w  

Jr(t) = wt%(t)/2, V(t) = wtO(t) (21) 

Here B(t) is the Heaviside function. Then space-time 
distribution in this case as 

ne*lw( = - - (A)“‘: .I, nF, r T sin(T) 
cb 

Q(t - T - R/c) dz 
(t - z-R/c) 

(22) 

The electric field is determined by Eq. (12). 
One can see from Eq. (22) that an accelerated edge 

dislocation emits cylindrical waves. This is 
bremsstrahlung, but the acceleration dependence of the 
fields (via the co-factor - sin(7m\wlz2/2b) in the inte- 
grand in Eq. (22)) is more complicated than in the case 
of bremsstrahlung from a single free charge. It is obvi- 
ous, however, that because the function - (mlwlz*/2b) 
in the integrand is bounded, the intensities of the 
radiation fields are mainly proportional to the accelera- 

tion IwI of the dislocation, as should be for the dipole 
component of bremsstrahlung [6]. 

7. Conclusions 

The results obtained in the present paper show that 
the detection of electromagnetic radiation emitted by 
dislocations moving in ionic crystals can be an effective 
tool for investigating the dynamical parameters of de- 
fects of this kind in the process of plastic deformation. 
Analysis of the spectral composition of the radiation in 
principle yields important information about the struc- 
ture of the Peierls relief in the crystal. Indeed, if several 
harmonics of the fundamental frequency and ao can be 
recorded experimentally in the radiation, then the am- 
plitudes F, of the Fourier harmonics of the function 
F(x) can be found and the form of this function can be 
reconstructed. It must be underscored that this cannot 
be done by any of the currently available methods for 
investigating dislocations. It will ultimately make it 
possible to develop new methods of nondestructive 
testing of materials; such methods which will find many 
applications in both fundamental solid-state physics 
and engineering problems. 
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